O3-N2O correlations from the Atmospheric Chemistry Experiment: Revisiting a diagnostic of transport and chemistry in the stratosphere

نویسندگان

  • Michaela I. Hegglin
  • Theodore G. Shepherd
چکیده

[1] Our knowledge of stratospheric O3-N2O correlations is extended, and their potential for model-measurement comparison assessed, using data from the Atmospheric Chemistry Experiment (ACE) satellite and the Canadian Middle Atmosphere Model (CMAM). ACE provides the first comprehensive data set for the investigation of interhemispheric, interseasonal, and height-resolved differences of the O3-N2O correlation structure. By subsampling the CMAM data, the representativeness of the ACE data is evaluated. In the middle stratosphere, where the correlations are not compact and therefore mainly reflect the data sampling, joint probability density functions provide a detailed picture of key aspects of transport and mixing, but also trace polar ozone loss. CMAM captures these important features, but exhibits a displacement of the tropical pipe into the Southern Hemisphere (SH). Below about 21 km, the ACE data generally confirm the compactness of the correlations, although chemical ozone loss tends to destroy the compactness during late winter/spring, especially in the SH. This allows a quantitative comparison of the correlation slopes in the lower and lowermost stratosphere (LMS), which exhibit distinct seasonal cycles that reveal the different balances between diabatic descent and horizontal mixing in these two regions in the Northern Hemisphere (NH), reconciling differences found in aircraft measurements, and the strong role of chemical ozone loss in the SH. The seasonal cycles are qualitatively well reproduced by CMAM, although their amplitude is too weak in the NH LMS. The correlation slopes allow a ‘‘chemical’’ definition of the LMS, which is found to vary substantially in vertical extent with season.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NO, NOy, N2O, and O3 in the UT/LMS

Measurements of NO, NOy, N2O, and O3 during SPURT: implications for transport and chemistry in the lowermost stratosphere M. I. Hegglin, D. Brunner, Th. Peter, P. Hoor, H. Fischer, J. Staehelin, M. Krebsbach, C. Schiller, U. Parchatka, and U. Weers Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology, Zurich, Switzerland Max Planck Institute for Chemistry, Air Ch...

متن کامل

Validating the reported random errors of ACE‐FTS measurements

[1] In order to validate the reported precision of space‐based atmospheric composition measurements, validation studies often focus on measurements in the tropical stratosphere, where natural variability is weak. The scatter in tropical measurements can then be used as an upper limit on single‐profile measurement precision. Here we introduce a method of quantifying the scatter of tropical measu...

متن کامل

Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model

Transport from the surface to the lowermost stratosphere (LMS) can occur on timescales of a few months or less, making it possible for short-lived tropospheric pollutants to influence stratospheric composition and chemistry. Models used to study this influence must demonstrate the credibility of their chemistry and transport in the upper troposphere and lower stratosphere (UT/LS). Data sets fro...

متن کامل

Sensitivity studies of the recent new data on O(1D) quantum yields in O3 Hartley band photolysis in the stratosphere

The production yields of excited oxygen O(1D) atoms from the near ultraviolet O3 photolysis are essential quantities for atmospheric chemistry calculations because of its importance as major sources of hydroxyl (OH) radicals and nitric oxide (NO). Recently, new O(1D) quantum yields from O3 photolysis between 230 and 305 nm in the Hartley band region were reported, which are almost independent o...

متن کامل

Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data

Evidence of chemical isolation in the Asian monsoon anticyclone is presented using chemical constituents obtained from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer instrument during summer (June–August) of 2004–2006. Carbon monoxide (CO) shows a broad maximum over the monsoon anticyclone region in the upper troposphere and lower stratosphere (UTLS); these enhanced CO valu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007